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Dislocations and faults in some alloys 
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By using the method of variance of the respective X-ray diffraction line profile, the effective 
particle size (p) and r.m.s, strain ((S2) 1/2) of four alloys containing copper and aluminium 
(AI-0.08, 4 and 10wt% Cu and Cu-5 .87wt% AI) at different annealing stages (starting from 
the cold filed stages) have been determined. From the peak shift of these samples, their 
average stacking fault probability e = ~' - ~" where c( is the intrinsic stacking fault probability 
and c(' the corresponding extrinsic stacking fault probability, respectively, were determined. 
Similarly, from the angular distance between the peak and the centroid of the diffraction 
profiles, the magnitude of/3 + 4.5c~", where fi is the twinning fault probability, was measured. 
From these, the true particle size T, the stacking and twinning fault probabilities ~', c<" and fl 
and the minimum stacking fault width Dmin have been determined. The hardness of alloys at 
different annealing stages was found to be dependent on the dislocation density and the 
stored energy in the alloys. The relation T ($2)  1/2 = constant was found to be valid for the 
alloys and from this a mechanism of grain growth with annealing has been suggested. With 
annealing the dislocation density and stored energy per unit volume were found to decrease 
until finally, in the fully annealed stages, they disappeared. The same was found to be valid for 
stacking and twinning fault probabilities as well as the minimum stacking fault width. A 
mechanism for the creation and annihilation of the instrinsic and extrinsic stacking faults has 
been suggested. 

1. Introduction 
Dislocations and faults in alloys containing copper 
and aluminium have aroused much recent renewed 
interest. Wang and Yu [1] have determined the defect 
parameters like particle size, strain, and stacking 
and twinning fault probabilities in the alloys Cu-  11.1 
and 8.3 at % AI by the X-ray diffraction line profile 
(XRDLP) technique. At the aluminium end of the 
composition, the alloy A1-4 wt % Cu has been studied 
in its single-crystal form by Sato et al. [2] using the 
electron microscopic method. There does not appear 
to be any XRDLP study on this alloy although 
Guinier [3] and Preston [4] have studied these by the 
single-crystal X-ray method. Preston [4] showed that 
above 200 ° C, the copper atoms segregate in localized 
areas and CuA12 cells are formed in between the 
aluminium cells. While normally the CuA12 cells are 
tetragonal inside the aluminium cells, they get disturbed 
and tend to adopt a fluorite structure - thus causing 
the stored energy to be rather high, tending towards 
contributing high strain hardening. Later Thomas and 
Washburn [5] showed by electron microscopic studies 
that this alloy contains a high density of screw dislo- 
cations which on anealing become converted into heli- 
ces. At the copper end some XRDLP work, especially 
on stacking fault probabilities, has been carried out by 
Christian and Spreadborough [6]. After these initial 
studies, many improvements in theory and exper- 
imentation have taken place. One remarkable advance 
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in analytical techniques has been the method of 
moments initiated by Wilson [7, 81 and developed 
among others by Mitra [9, 10]. 

In the course of the present work, dislocation 
densities and fault probabilities in two single-phase 
alloys containing copper and aluminium - one at the 
copper end containing 5.87 wt % A1 while the other is 
at the aluminium end containing 0.08 wt % Cu - and 
the two double-phase (c~ and 0) alloys Al-4  and 
10wt% Cu have been studied by the methods of 
moments. 

2. Comments on the XRDLP techniques 
used 

Techniques used widely for XRDLP studied include 
(i) the method of Williamson and Hall [11] based on 
the integral width of the line profile introduced by 
Laue [12], and (ii) the method of Warren and Averbach 
[13] based on the Fourier transform of the line profile. 
Although both these methods are very widely used, 
they depend on assumptions regarding the nature of 
the line profile. While the method of integral widths is 
based on the nature of the diffraction profiles for 
particle size as well as defect, the method of Fourier 
coefficients depend on assumptions regarding the 
strain profile only. No assumption regarding the par- 
ticle size profile is necessary. Averbach and Warren 
[14] have assumed the strain profile to be of the 
Gaussian type, while Williamson and Smallman [15] 
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have assumed it to be of Cauchy type. Recently Lang- 
ford [16] has assumed the strain distribution to be of 
the Voigt type and Wang and Yu [1] have made use of 
this assumption. However, there appears to be no a 
priori reason why any of the assumptions will be valid 
although all are equally plausible. There is no exper- 
imental method of  verifying the correctness of either 
of the assumptions. Moreover, Mitra and Chaudhury 
[17] have pointed out some basic limitations of the 
method of the Fourier analysis of the line profiles. 

However, all these uncertainties can be eliminated if 
one uses the method of  moments developed by Wilson 
[7, 8] and Mitra [9, 10]. This method is independent of 
any assumption regarding the nature of the convoluting 
profiles. Hence, in the present investigation this method 
has been used. 

3. Theoret ica l  basis of the exper imenta l  
technique  

3.1. Determination of particle size and strain 
We know that the variance or the second central 
moment about the mean of a distribution h(x) is given 
by 

f+" - <h>]dx 
h(x) dx 

where ( h )  = ~ xh(x)dx/~h(x)dx is the mean or the 
first moment of the distribution. 

Both (h)  and W h have the unique property that if 
h(x) is a result of the convolution of n distributions 
hi (x), h2(x) . . . .  h,(x), then whatever be the nature of 
these distributions the resultant first and second 
moment about the mean of the component convoluted 
profiles will be the algebraic sum of the corresponding 
moments of the component profiles, i.e. 

= <h~> + <h~> + <h~> + . . .  + <h.> <h> 

and 

w. 

Here 

h(x) 

= w~, + w ~  + w ~  + • • • + w~.  

= h l (X ) * h2(x  ) * h3(x  ) * hn(x ) 
where the asterisk represents a convolution. 

Hence, if a line profile I(S) has component profiles 
due to particle size P(S) and a defect profile D(S) i.e. 
if H(S) = P(S)* D(S), then 

wh = w~ + wo (1) 

irrespective of the natures of P(S) and D(S). This is 
also true for the geometrical profiles G(S) and the 
pure diffraction profile H(S), so that 

/(S) = H ( S ) ,  G(S) 

and 

= Wh + Gh (2) 

The variance of the line profile can be corrected for 
geometrical and instrumental effects with the help of 
Equation 2 and that for the pure diffraction line 
profile can be separated into particle size and other 
defect parametric contributions with the help of 
Equation 1 once the explicit analytic forms of Wp and 
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Wv are known. Mitra [10] has derived the equation 

Whcos0 1 n22 (S  2) 
2o- = ~ + - -  (3) a cos  0 a 2 

where Wh = the variance of the observed diffraction 
profile corrected for geometrical - and instrumental 
broadenings, 0 = Bragg angle corresponding to the 
reflection under study, 2 = wavelength of the radi- 
ation used, a = angular range of the reflection under 
study, p = average effective particle size, (S  2) = 
average squared effective strains, n = the order of the 
reflection and a = lattice spacing corresponding to 
reflection. 

Mitra [10] has shown that a plot of Wh COS 0/2~r 
against n22/a cos 0 is linear with an intercept of 
1/2n2p on the Wh cos O/2a axis and a slope of tan -~ 
((S2)/a 2) from which lip and (S  2) can be obtained. 
It has been shown by Warren [18] that for fc c crystals 

1 _ 1 1 . h a  + fl V + I L0l (4) 
p T al(a + b) 

where Tis the true particle size of the microcrystallities, 
and fl are respectively the stacking and twinning 

fault probabilities, L0 = h + k + / where h, k, l are 
the Miller indices of the reflection studied and a, b are 
components of L0 which are unbroadened and 
broadened by faults, respectively. Equation 4 as 
derived by Warren [18] is valid when the apparent 
particle size p is calculated from 

dAp(t) ,~0 - 1 
dt p 

where Ap(l) is the tth order Fourier transformation of 
P(S). 

For the case of determination of particle size by the 
method of variance, Wilson [7] showed that 

w - -  2~  ~ LAp(0) j 

in reciprocal lattice units, which when converted to 
(20) units becomes identical with the first term of 
Equation 3. Here 

Ap(0) = 1 and Ap(0) = dAp(t) I -  s 
dt _t=o 

which is the same as the Warren [18] expression for 
lip. Thus 1/p determined by the method of second 
moments has the same significance as 1/p as deter- 
mined by Warren [18]. In Equation 4, a = ~' - a" 
where a' is the intrinsic and a" the extrinsic stacking 
fault probabilities [19]. Having obtained p from a 
graphical solution of Equation 3 by the method 
described by Mitra [10], T can be determined with the 
help of Equation 4 once ~, fl and [1/l(a + b)] Y.I I L0l 
are known. Values of [1/l(a + b)] Y't [L01 are given by 
Warren [18] for different reflections (h, k, l values) of 
f cc  and b c c lattices, a and fl are determined in the 
way described below. 

3.2. De te rmina t ion  of the s tack ing - fau l t  
parameter c~ 

The method for studying the stacking-fault parameter 
used in the course of these investigations is due to 



Warren and Warekois [20], who showed that the com- 
bined peak shift of the (1 1 1) and (2 0 0) reflections of 
an fc c crystal due to stacking fault e is given by 

A(202oo - 20111) 

- 2z 2 ~[2 tan 0200 + tan 01~d (5) 

where 20200 and 2011 ~ are the peak shifts of (2 0 0) and 
(1 1 1) reflections, measured in terms of the angle of 
scattering in degrees. A(202oo- 20111) has been 
obtained from 

(20200 - -  20111 )cold . . . .  ked - -  (20200 - -  20111) . . . . .  led 

= A(202oo - 20111) 

900  

tg: 

3.3. Determination of/~ 
Wagner [21] showed that 

<h>,,, - < h > 2 o o  
= ]~ + 4 . 5 e "  ( 6 )  

11 tan 01 l l + 14.6 tan 0200 

Here (h>~ll and (h>2oo represent the first moment of 
the intensity profile in (20) units of the 1 1 1 and 2 0 0 
reflections of an fc c crystal. The profiles are supposed 
to have been corrected for the Lorentz-polarization 
factor. 

4. Experimental technique 
The samples studied are the alloys containing copper 
and aluminium and of the following compositions 

(i) 99.92 wt % A1, 0.08 wt % Cu 
(ii) 96 wt % A1, 4 wt % Cu 

(iii) 90wt% A1, 10wt % Cu 
(iv) 5.87wt% A1, 94.13wt % Cu 

Spectroscopically pure aluminium and copper rods 
supplied by Johnson Matthey, London, were used for 
preparing the alloys. The alloys after homogenization 
were cold-drawn and then filed at room temperature 
(30 ° C). The filings were then studied at different 
stages of annealing by crystal-monochromatized 
radiation from an X-ray generator running at 30 kV 
and 20 mA. X-rays diffracted at various angles were 
measured by a Geiger counter followed by an elec- 
tronic circuit panel and chart recorder. Initially, the 
chart was run at the rate of 1/4nmin -~ to locate the 
positions and width of the reflections. Then for actual 
analysis the Geiger counter detector was moved manu- 
ally so that the time for 10 000 counts at each position 
was noted and the statistical error in counting came 
down to the order of 1%. Full details of the exper- 
imental arrangements have been described by Mitra 
[22]. The line profiles were corrected for geometrical 
broadening by the Stokes [23] deconvolution technique. 
Pure instrumental broadening for aluminium-rich 
alloys was obtained from spectroscopically pure 
aluminium filings annealed at 500 ° C for 4 h, and that 
for the copper-rich sample was obtained from spec- 
troscopically pure copper filings annealed at 800°C 
for 8 h. Each intensity profile was now corrected for 
background scattering by the method due to Mitra 
and Misra [24], for temperature diffused scattering by 
the method of Chipman and Paskin [25] and for defect 

-0 40 80 120 160 200 
nan  
o" cos e (107cm) 

Figure I Determination of  particle size and strain by the method of  
variance from the plot of  W cos 0/2a against n22/~r cos 0 for the 
alloy Cu-5 .87wt  % A1. (1 1 1) directions. 

diffused scattering by the method of Borie [26]. The 
reflections were finally corrected for extinction by the 
method of Mitra e t  al .  [27]. 

Having obtained the profiles of the reflections and 
corrected them as above for various factors, the par- 
ameters (h> and Wwere obtained for all of them with 
the range of integration a varying within permissible 
limits [28]. Next, by using Equation 3, the effective 
particle size and the root mean squared strain (S 2)~/2 
were determined. Corrections for non-additivity and 
curvature terms were made as advocated by Mitra and 
Mukherjee [29]. One set of the relevant linear plots 
(for Cu-5.87% A1) is shown in Fig. l. The stacking 
fault probability c~ and twinning fault probability j? 
were determined with the help of Equations 5 and 6. 
For evaluation of e, a Guinier assymmetric quartz 
monochromator was used which achieved a sufficient 
separation between CuK~ and CuK~ 2 lines, so that the 
latter radiation was dispensed with and the measure- 
ment was carried out with only CuK,~ radiation. Solv- 
ing Equations 4, 5 and 6 the values of T, e', ~" and/~ 
have been obtained. The values oft(, e",/~ and Dm~ are 
shown in Table I. Dmi, is calculated by using the 
expression Drain = 0 . 8 2 / ( 2 . 3 1 / 2 P 1 1 1  - l/P200). 

5. Discussion 
5.1. Effect of the solute atom 
In the course of the present investigations, the samples 
studied have been four alloys containing aluminium 
and copper. Two of these alloys, namely Al-0.08 wt % 
Cu and Cu-5.87wt % A1, have a single phase each. 
The two double-phase alloys are A1-4 and 10% Cu. It 
will be interesting to compare the different physical 
parameters measured in the course of these investiga- 
tions and hence try to observe the influence of atoms 
of one kind on the lattice of others. The comparative 
study of the different parameters has been described 
below. 
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TAB L E I Calculated values of stacking and twinning fault probabilities and minimum stacking fault width 

Sample Temperature of Stacking fault probability Twinning fault Minimum 

annealing (° C) Intrinsic, Extrinsic, probability,/~ x 103 stacking-fault 
~' x 103 ~" x 10 3 width, Dmln(nm) 

AI-0.08%Cu 30 3.4 0 8.2 
100 1.8 0 4.3 
200 0 0 0 
300 0 0 0 

A1-4% Cu 30 36 4 48 
100 28 3 37 
200 12 2 25 
300 5 1 23 
400 2 0 23 

Al-10% Cu 30 37 4 51 
100 30 3 42 
200 14 2 31 
300 7 1 29 
400 3 0 26 

Cu 5.87%A1 30 32 3 65 
100 20 2 42 
200 8.5 1.1 31 
300 4.3 0.8 12 
400 0 0 0 
500 0 0 0 

88.5 
124.3 
158.2 
290.7 

9.6 
15.8 
18.4 
38.6 
62.9 

12.9 
11.3 
29.3 
28.6 
41.3 

22.6 
22.6 
22.6 
23.9 
29.7 
47.4 

5.2. Hardness 
Table II shows that the effect of addition of 0.08 wt % 
Cu to aluminium is to increase its VPN hardness at the 
cold-worked stage to a much greater extent than at the 
annealed state. The hardness of super-pure aluminium 
cold-worked to greater than 99.9% is about 30 VPN, 
while that of the alloy A1-0.08wt% Cu similarly 
cold-worked is 56 VPN, i.e. about double the former 
value. The hardness of the cold-worked sample of 
aluminium comes down to 20 VPN on annealing at 
300 ° C for half an hour. The hardening of the alloy 
A1-0.08 wt % Cu comes down on the other hand to 
the value 29 VPN on similar heat treatment. Thus, the 
addition of 0.08wt% Cu to aluminium does not 

T A B L E  II Hardness of four copper aluminium alloys 

Sample Temperature of Hardness 
annealing (° C) (VPN) 

A1-0.08% Cu 30 56 
100 54 
200 45 
300 29 

A1 4 % C u  30 78 
100 75 
200 67 
300 56 
400 34 

AI -10%Cu 30 132 
100 128 
200 85 
300 52 
400 35 

Cu-5.87%A1 30 210 
100 195 
200 172 
300 98 
400 86 
500 79 

increase the hardness of the annealed sample but 
increases its work-hardenability to a much greater 
extent. Similar results are obtained for the case of 
addition of 5.87 wt % A1 to copper. While the hard- 
nesses of the alloy and copper, similarly cold-worked, 
are 210 and 125 VPN, respectively, those of the samples 
annealed at 500°C for half an hour are 79 and 51 
VPN, respectively. It is also evident that an increase in 
the proportion of the solute atoms tends to increase 
the hardness of the cold-worked sample, as is evident 
from the values of hardnesses of aluminium alloys 
containing 0.08, 4 and 10wt% Cu. The increase in 
hardness of the two-phase alloys indicates the 
influence of the precipitation of the 0-phase. 

5.3. Dislocation density and stored energy 
Figs 2 and 3 show the dislocation density and the 
stored energy of the samples under study at different 
stages of annealing. The dislocation density has been 
evaluated from the equation 

Qp = 3 n / T  2 

where T is the particle size. It assumes that each 
crystallite face is the starting point of n dislocation 
lines, each of which terminates at the opposite surface. 
n is generally unity but often it may be that n > 1. 
This consideration does not take into account the 
Frank-Read sources of dislocations which may even- 
tually contribute to the strain. The correlation between 
dislocation density and hardness is quite remarkable. 
For materials and annealing stages at which the dis- 
location density is high, the hardness of the material is 
also correspondingly high. This shows that hardness is 
enhanced by the pinning of dislocations by solute 
atoms. 

The stored energy has been calculated with the help 
of the expression derived by Faulkner [30] and given 
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Figure 2 Plot of dislocation density against tempera- 
ture of annealing. Main plot: ( - . - )  A1-4% Cu, 
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as  

15E 
v = 2(3 - 4v + 8v 2) ( $2 )  

where v is the energy stored per unit volume of the 
material, E its Youngs modulus, v is the Poisson's 
ratio and <S 2 > is the average squared strain as in 
Equation 3. E has been evaluated along different 
directions from the values of elastic constants deter- 
mined by the method due to Giri and Mitra [31]. The 
value of v is 0.34 [32] for both copper and aluminium 
and hence the values of  v for alloys too have been 
taken to be 0.34. The results of the calculations are 
shown in Fig. 3. Since the energy stored in the crystal- 
lites of the material is principally due to the dislocations 
in it, it is natural to expect that the nature of the 
variation of the dislocation density will be similar to 
that of the variation of the stored energy in it. That this 
is so is quite evident from a comparison of the two sets 
of graphs shown in Figs 2 and 3. It is observed that the 
stored energy is a maximum for the (1 1 1) plane of  the 
alloy Cu-5 .87% A1. The diameter of  the aluminium 
atom being 0.2856 rim, when the aluminium atoms are 
placed substitutionally in a copper lattice - copper 
atoms have diameters of 0.2585 nm each - a large 
strain is developed, the copper atoms are all pushed 
around and a large amount of potential energy is 
stored in the alloy. On the other hand, when copper 

atoms with a smaller diameter are pushed inside an 
aluminium matrix, the solute atoms are fitted in with 
relative ease and only the formation of the 0 phase 
takes place. 

5.4. Relation between particle size and strain 
Rovinskii and Rybakova [33] and Despujols and 
Warren [34] have observed an inverse relation between 
particle size and strain. To determine whether this 
relationship is also valid for the values measured in the 
course of the present investigation, the strain values 
determined by the method of variance have been plot- 
ted against the corresponding particle size values. 
Fig. 4 shows this plot. The resulting curves are 
approximately rectangular hyperbolae. Thus the 
inverse relation is found to be valid for the present 
case too. An explanation may be given in the follow- 
ing way. The dislocation densities determined from 
the particle size T and r.m.s, strain { S 2)1/2 are ,or and 
~., respectively, and are given by [35] 

3n 
Or = ~-7 (7) 

and 

K <S 2 > 
0~ - F b 2 (8)  

where n is the number of dislocations per particle face, 
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1 5 7 8  

b is the Burgers vector, K = 6hE~# In (r/ro) and F = 
IT/V~; V = energy per dislocation taking into account 
effects of interactions, V~ = energy per isolated dis- 
locations, E and # are the Young's and rigidity modu- 
lus, respectively, r the radius of  the crystal containing 
the dislocations and r0 a suitably chosen integration 
limit, usually about l0  -7 cm.  Generally Qr # 0~, but 
they are most likely to be related through a sample 
factor. If m be such a factor, then 

3n K ( S  2 ) 

T2 - m ~  b--- T -  

($2 ) ' / 2T  = (3nF) '/z 
\mK,] b (9) 

F and K are generally constant qualities for a given 
substance and a given type of  dislocation; so are m and 
b, and if n is kept constant, (S2)J/2T will also be 
constant. Based on this result, a hypothesis regarding 
the growth of  particle size may be that n for a given 
type of  dislocation and substance is fixed irrespective 
of dislocation density. As with annealing, the number 
of dislocations decreases and the remaining disloca- 
tions are spread evenly over a larger area than 
previously, so that the number of dislocations per 
particle face is kept constant. This results in enlarge- 
ments of the particle faces and hence of the particle 
s i ze .  



5.5. Stacking and growth faults and stacking 
fault widths 

Table I shows the ettect of annealing on extrinsic and 
intrinsic fault probabilities and of growth faults as 
well as the minimum width of stacking-fault ribbons 
in the cases of the alloys studied. It is noteworthy that 
while growth faults are extensively and persistently 
present, stacking faults are relatively rare and are 
eliminated with relative ease. The extrinsic fault 
probabilities are much lower compared to the intrinsic 
fault probabilities. The intrinsic fault probabilities are 
probably due to the blow-up of vacancies, while the 
extrinsic faults are due to the pinning down of dis- 
locations by foreign atoms. The gradual merger of the 
CuAI2 phases disintegrating from the matrix of the 0 
phase causes the gradual disappearance of the ~" par- 
ameter. The ~ parameters are due to rearrangement of 
point defects accompanied by their creation and 
annihilation, but leading to their final disappearance. 
The minimum widths of stacking-fault ribbons also 
decrease, and at complete annealing they finally vanish. 
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